
A new concept of geometric phase in parameter space: coupling as a parameter

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 9547

(http://iopscience.iop.org/0305-4470/39/30/010)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/30
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 9547–9555 doi:10.1088/0305-4470/39/30/010

A new concept of geometric phase in parameter space:
coupling as a parameter

Lei Xing

Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China

E-mail: amphysicsboy@yahoo.com.cn

Received 15 February 2006, in final form 18 June 2006
Published 12 July 2006
Online at stacks.iop.org/JPhysA/39/9547

Abstract
We have obtained the geometric phase of the tripartite spin-1/2 system with
spin–spin coupling and discussed the influence of this coupling on the geometric
phase. We have discovered the coupling-independent geometric phase and
explained it. Based on this work, we propose the concept of quasimagnetic
field and assimilate the coupling into the parameter space. By this theory, the
relation between the geometric phase and the solid angle in parameter space
still holds for a system with spin–spin coupling if the concept of the parameter
is properly revised in the way we have elucidated.

PACS numbers: 03.65.Vf, 03.67.Lx

1. Introduction

Since 1984, the concept of geometric phase [1] has attracted a large amount of interest from
various branches of modern physical research. The geometric phases of different backgrounds,
such as in mixed states [2], for open systems [3–11] and with a quantized field driving [12],
have been actively researched.

One of the most important applications of geometric phase is quantum computation [13].
The basic idea is to let one sub-system undergo a coherent evolution that depends on the
quantum state of other sub-systems. After the evolution, the evolving sub-system will acquire
a conditional phase shift, which is a combination of the dynamic phase shift and geometric
phase shift. If the unwanted dynamic phase is offset by some methods [14] and the geometric
phase shift is measured, then this quantal system will become a quantum computer operation
unit. Because geometric phases depend only on the geometry of the path executed, they are
resilient to certain types of errors. This fault-tolerant feature is very attractive.

As the carrier of geometric phase in the evolving field, spin systems are an important
model in the realization of the solid-state quantum computer [15] because they each only have
two levels and thereby are a natural representation of a quantum bit (qubit). Besides, unusually
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long spin coherence time in doped semiconductors, exceeding 100 ms, has been revealed by
magneto-optical experiments [16].

The basic picture in this paper is as follows: there are n (n � 2) spin-1/2 particles in a
slowly rotating magnetic field with one particle driven by the field. After a cyclic process, a
geometric phase is generated. This model is labelled as a one-site magnetic drive n-particle
system.

Generally, spin particles have internal exchange coupling, which comes from virtual
tunnelling of electrons from one quantum dot to the other and back, and is subject to several
external physical parameters (gate voltages, magnetic field, etc) [17]. Because the spin–spin
coupling can affect the state of the quantal system and therefore affect the geometric phase
shift, a study on this influence is of great significance.

So far, there have been several papers [18] discussing the case n = 2, i.e. two spin-1/2
particles. They found that the coupling remarkably affects the geometric phase. However,
a more complicated system, i.e. n � 3, has not been discussed and the mechanisms of
the influence of spin coupling on geometric phase remain unexplored. In this paper, we
investigate the geometric phase of the three-particle system (n = 3). We also carefully discuss
the influence of coupling on geometric phase and propose a new perspective on the parameter
space.

2. The geometric phase of tripartite spin-1/2 system

To begin with, we briefly review the case of one quantum spin driven by a slowly rotating
magnetic field [1, 19]. In particular, we consider the case in which the direction of the
magnetic field precesses around a fixed axis which we take as the 3-axis (z-axis) of our
laboratory coordinate frame in space R3. We suppose that the direction rotates slowly (i.e.
adiabatically). The Hamiltonian is H( �B) = eh̄

2mc
�σ1 · �B, e and m being the charge and mass

of the particle, respectively. After a cyclic process, a geometric phase shift is generated. The
phase shift is defined by the Berry formula [19] as

γ = i
∫ T

0
dt〈ψ(t)| d

dt
|ψ(t)〉 = 1

2
�. (1)

Here, |ψ(t)〉 is a single-valued energy eigenvector and � is the solid angle subtended by the
loop � traversed by �B in the parameter space. Traditionally, n̂, the direction of �B, acts as the
parameter vector; it is equivalent to regard �B as a parameter vector here.

However, when this spin is the component of a spin system, the spin–spin coupling will
influence the geometric phase. Here, we discuss the geometric phase of the tripartite model
in detail.

The tripartite spin systems are widely studied in chemical spectroscopy by NMR [20].
For example, trichloroethane, CCl3–CH3, is a system of three spins placed at the apices of an
equilateral triangle [21]. The value of coupling constant J often lies between 1 and 10 Hz [22].
Practically, the one-site magnetic drive is routinely realized in NMR by using spins of nuclei
of different isotopes, such as those of different species of atoms, as the sub-systems. These
spins usually have precession frequencies that differ from each other by many megahertz; a
resonant magnetic field for one spin then has little effect on the others [14]. Supposing that
spins 2 and 3 belong to the same type of particles and spin 1 belongs to another type, we can
write the Hamiltonian as follows:

H( �B) = eh̄

2mc
�σ1 · �B(t) + Jz

(
σ z

1 σ z
2 + σ z

1 σ z
3

)
+ J ′

zσ
z
2 σ z

3 , (2)
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where n̂ = {sin θ cos ϕ, sin θ sin ϕ, cos θ} and θ is a constant. We suppose that the spin
coupling constant between spins 1 and 2 (or 3) is Ji and between 2 and 3 is J ′

i , where
i = x, y, z (generally Ji �= J ′

i ). For simplicity, here we only consider the coupling in the
z-direction, i.e. Jx = Jy = 0, J ′

x = J ′
y = 0.

In the space spanned by |↑↑↑〉, |↑↑↓〉, |↑↓↓〉, |↓↓↓〉, |↓↑↑〉, |↓↑↓〉, |↓↓↑〉, |↑↓↑〉 and
the unit eh̄

2mc
= 1, we present the Hamiltonian in equation (2) as

H =




B cos θ + J ′
z + 2Jz 0 0 0

0 B cos θ − J ′
z 0 0

0 0 B cos θ + J ′
z − 2Jz B sin θ e−iϕ

0 0 B sin θ eiϕ −B cos θ + J ′
z + 2Jz

B sin θ eiϕ 0 0 0
0 B sin θ eiϕ 0 0
0 0 0 0
0 0 0 0

B sin θ e−iϕ 0 0 0
0 B sin θ e−iϕ 0 0
0 0 0 0
0 0 0 0

−B cos θ + J ′
z − 2Jz 0 0 0

0 −B cos θ − J ′
z 0 0

0 0 B sin θ e−iϕ B cos θ − J ′
z

0 0 −B cos θ − J ′
z B sin θ eiϕ




.

(3)

Evaluating the matrix yields the eigenvalues Ei, i = 1, 2, . . . , 8:

E1 = −B − J ′
z, E2 = −B − J ′

z, E3 = B − J ′
z, E4 = B − J ′

z,

E5 = J ′
z − √

B2 + 4J 2
z − 4BJz cos θ, E6 = J ′

z +
√

B2 + 4J 2
z − 4BJz cos θ,

E7 = J ′
z − √

B2 + 4J 2
z + 4BJz cos θ, E8 = J ′

z +
√

B2 + 4J 2
z + 4BJz cos θ.

(4)

The corresponding eigenstates are

|ψ1〉 = −eiϕ cot(θ/2)|↓↓↑〉 + |↑↓↑〉,
|ψ2〉 = −e−iϕ tan(θ/2)|↑↑↓〉 + |↓↑↓〉,
|ψ3〉 = eiϕ tan(θ/2)|↓↓↑〉 + |↑↓↑〉,
|ψ4〉 = e−iϕ cot(θ/2)|↑↑↓〉 + |↓↑↓〉,

|ψ5〉 = e−iϕ
(−2Jz + B cos θ − √

B2 + 4J 2
z − 4BJz cos θ

)
csc θ

B
|↑↓↓〉 + |↓↓↓〉,

|ψ6〉 = e−iϕ
(−2Jz + B cos θ +

√
B2 + 4J 2

z − 4BJz cos θ
)

csc θ

B
|↑↓↓〉 + |↓↓↓〉,

|ψ7〉 = e−iϕ
(
2Jz + B cos θ − √

B2 + 4J 2
z + 4BJz cos θ

)
csc θ

B
|↑↑↑〉 + |↓↑↑〉,

|ψ8〉 = e−iϕ
(
2Jz + B cos θ +

√
B2 + 4J 2

z + 4BJz cos θ
)

csc θ

B
|↑↑↑〉 + |↓↑↑〉.

(5)

Here |ψi〉 (i = 1, 2, . . . , 8) is a single-valued energy eigenvector and we only consider the
geometric phase of the pure state evolving adiabatically and cyclically. By the definition of
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Figure 1. The relation between geometric phase and coupling constant Jz of the one-site drive
tripartite model, where θ = π/4. It is seen that the phases of states 1–4 are constants independent
of coupling constant. The geometric phase of the other states will tend to a fixed value when the
coupling approaches infinity.

Berry, we get the geometric phases of these states by the formula γ = i
∫ 〈ψ | d

dt
|ψ〉dt as

follows:
γ1 = γ2 = π(1 − cos θ),

γ3 = γ4 = π(1 + cos θ),

γ5,6 = π

(
1 ∓ B cos θ − 2Jz√

B2 + 4J 2
z − 4BJz cos θ

)
,

γ7,8 = π

(
1 ∓ B cos θ + 2Jz√

B2 + 4J 2
z + 4BJz cos θ

)
.

(6)

These are the final result. Now we are in a position to discuss the influence of the spin coupling
on geometric phase.

3. Influence of spin coupling on geometric phase

To further the discussion, we plot the geometric phases of these states in figure 1 and the
relationship of the geometric phase of the state 6, coupling constant and cone angle of the
magnetic field in figure 2. It is noted that the geometric phases of the states from 1 to 4 are
exactly the case of a single spin driven by a rotating magnetic field with no coupling. In
other words, the spin coupling has no influence on the geometric phases of these states. We
label these phases as coupling-independent geometric phase. On the other hand, the phases
of states 5–8 are markedly affected by the coupling from figure 1. It is worth noting that as
the coupling approaches infinity, the phases all tend to a fixed value—multiple of 2π . This
is called the quenching effect, which was pointed out by Yi and Sjoqvist [23]. Although the
effect is obvious from the figure, a sound explanation is, however, still open to us. Here, we
carefully discuss the origin of such an effect.
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Figure 2. The relation between coupling constant Jz, cone angle (CA) θ and geometric phase (GP)
in state 6. The magnetic field strength is chosen as unity because GP is a function of J/B and θ .

(This figure is in colour only in the electronic version)

First, let us review the form of equation (6). After careful observation, we may find that
the phases of states 5–8 can be rewritten in the following way:

γ5,6 = π(1 ∓ cos β) and γ7,8 = π(1 ∓ cos η), (7)

where

cos β = B cos θ − 2Jz√
B2 + 4J 2

z − 4BJz cos θ
= �y1

r1
,

cos η = B cos θ + 2Jz√
B2 + 4J 2

z + 4BJz cos θ
= �y2

r2
.

(8)

Why do we use the notation �y

ri
(i = 1, 2)? The reason can be found by examining the

geometry relation in figure 3. By virtue of this simple triangle in figure 3, we can instantly
understand that η (or β) is actually the internal angle of the triangle constructed by 2Jz and
B with separation angle θ . So it is obvious that the cosine of β or η is �y

ri
, where ri is the

amplitude of a new vector �K . Using this geometry relation, we find that the geometric phase
in the form of equation (7) can also be viewed as half the solid angle subtended by the loop �

traversed by the vector �K in figure 3.

4. The new parameter vector and quasimagnetic field

One may wonder why the coupling has no influence on the geometric phases of
states 1–4 according to equation (6). In answering this question, we propose the concept
of quasimagnetic field in this section. First, we may write the form of the one-site drive
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Figure 3. The implicit geometry relation in equation (6). We find what equation (6) implies is
actually this basic triangle with 2Jz, B and K being its sides. The coupling and magnetic field
constitute the vector K.

tripartite system in the aforementioned unit eh̄
2mc

= 1. For generality, we take account of the
anisotropic spin coupling existent in all directions:

H( �B) = �σ1 · �B(t) +
(
Jxσ

x
1 σx

2 + Jyσ
y

1 σ
y

2 + Jzσ
z
1 σ z

2

)
+

(
Jxσ

x
1 σx

3 + Jyσ
y

1 σ
y

3 + Jzσ
z
1 σ z

3

)
+ J ′

xσ
x
2 σx

3 + J ′
yσ

y

2 σ
y

3 + J ′
zσ

z
2 σ z

3 . (9)

It is worth noting that equation (2) is actually the special case of this Hamiltonian on the
condition that we omit the coupling in x, y directions, i.e. Jx = Jy = 0, J ′

x = J ′
y = 0. In the

following, we make a substitution. First, we introduce two new vectors �D2 = {
Dx

2 ,D
y

2 ,Dz
2

}
and �D3 = {

Dx
3 ,D

y

3 ,Dz
3

}
, which satisfy

Dx
2 = Jxσ

x
2 , D

y

2 = Jyσ
y

2 , Dz
2 = Jzσ

z
2 ,

(10)
Dx

3 = Jxσ
x
3 , D

y

3 = Jyσ
y

3 , Dz
2 = Jzσ

z
3 .

Then we transform equation (9) into

H( �B) = �σ1 · �B(t) + �σ1 · �D2 + �σ1 · �D3 +
∑

i=x,y,z

J ′
i σ

i
2σ

i
3

= �σ1 · [ �B(t) + �D2 + �D3] +
∑

i=x,y,z

J ′
i σ

i
2σ

i
3,

(11)

where �K(t) = �B(t)+ �D2 + �D3 is a new parameter vector. We note that �D2 + �D3 can be viewed
as a magnetic field. We term it as quasimagnetic field. So the new parameter vector is the
vector superposition of the original magnetic field and the newcomer—quasimagnetic field.

After the introduction of �K(t), the Hamiltonian can be expressed as H( �K). For the
convenience of plotting and discussion, we still use the simplified case previously discussed,
i.e. Jx = Jy = 0, J ′

x = J ′
y = 0. In this case, there only exists coupling in the z-direction, so

�D2 = {
0, 0, Jzσ

z
2

}
, �D3 = {

0, 0, Jzσ
z
3

}
. By equation (11), we can get the Hamiltonian with the

coupling present only in the z-direction:

H = �σ1 · [ �B(t) + Jz

(
σ z

2 + σ z
3

)
k̂
]

+ J ′
zσ

z
2 σ z

3 , (12)

where k̂ is the unit vector in the z-direction.
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(a) (b)

Figure 4. The new parameter space. (a) The superposition relation for states 5 and 6. (b) The
superposition relation for states 7 and 8. The new parameter vector �Ki , i = 1, 2, is the superposition
of �B and ±2Jz where the sign is dependent on the eigenvalues of (σ z

2 + σz
3 ) in equation (12). The

geometric phase is half the solid angle subtended by the loop � which is traversed by �Ki .

All the following discussion and figures are based on this simplified case. We plot the
parameter space of �K in figure 4. It is clearly seen that if �K replaces the previous �B, then
the geometric phase shift equals in value half the solid angle subtended by the loop traversed
by �K rather than �B. In [23], it is demonstrated that the relation between the geometric phase
and the solid angle enclosed by the magnetic field is broken by the spin–spin coupling. But
we find that, if the parameter itself is properly revised, the relation between the phase and the
solid angle still holds.

By this new parameter space theory, we can straightforwardly explain the origin of
coupling-independent geometric phase and the quenching effect. First, from equation (5) in
states 1–4, we find that spins 2 and 3 in these states have opposite direction. For example,
in state 1 |ψ1〉 = −eiϕ cot(θ/2)|↓↓↑〉 + |↑↓↑〉, spin 2 is down and spin 3 is up. By
equation (12), the counteracting spins lead to offset coupling effect and �K reverts to the
magnetic field �B. This is the case of single spin in the magnetic field. Second, in the states
where spins 2 and 3 have the same direction, the coupling effect will be reinforced. States 5–8
have such a property, so they have the geometric phases subject to the influence of spin–spin
coupling. In addition, it is worth noting that the derived formula (equation (12)) from the
original form of the Hamiltonian has prophesied that some eigenvectors will be irrelevant of
the spin coupling in the state satisfying σ z

2 + σ z
3 = 0. Therefore, the coupling-independent

geometric phase will be present in the state of other spin systems where the spins interacting
with that in the magnetic field can be counteracted.

From figure 4, we roughly deduce the solid angle from basic geometry relations as
follows:

� ≈ 2πB2(1 − cos θ)

(2Jz + B)2
, Jz 
 B. (13)
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When the coupling increases to infinity, the geometric phase will tend to 0 (multiple of 2π ),
i.e.

lim
J→+∞

� = 0. (14)

This is the origin of the quenching effect. However, we should state here that the quenching
effect is not peculiar to the tripartite system. Because the geometric phase is dependent
on the evolution of the time-dependent part in the Hamiltonian, the coupling term defines a
fixed preferred quantization axis that makes the eigenstates essentially unaffected by a weak
magnetic field. Therefore, as long as the coupling of the spin affected by magnetic field
approaches infinity, the geometric phase of multi-spin system will tend to 0 or a multiple
of 2π .

Now we have well explained the coupling-independent geometric phase and the quenching
effect. By our theory, except the magnetic field, only the quasimagnetic field ( �D2 + �D3) can
influence the geometric phase. Consequently, we infer that the omission of J ′

zσ
i
2 · σ i

3 will not
affect any change in the final geometric phase. This can be verified by equation (6), from
which we find that J ′

z does not occur in the final form of the geometric phase. Therefore, we
reach the conclusion: not all couplings exert the influence on the geometric phase although
they may usually affect the eigenvalues or eigenvectors of Hamiltonian; only those coupling
terms that contain the spin(s) simultaneously interacting with the (magnetic) drive field can
affect the final geometric phase.

Here we add some comments on this method. Although our concept that coupling is
viewed as a parameter and combined with the magnetic field term is new, the idea that several
parameters can be combined into a new parameter has been used or mentioned in several
papers. For example, in [24], Berry studied two examples about the generalized harmonic
oscillator and rotated rotator. In dealing with generalized harmonic oscillator, he regarded
the three parameters X, Y, Z as the components of the new vector X. Furthermore, in [25],
the author also used a similar method in the study of the gauge field structure. Besides,
[26] discusses the selection of parameter’s space by using a nonrelativistic charged spinless
particle evolving in the superposition of the fields produced by a Penning trap and a rotating
magnetic field and has excellently obtained the relation between the geometric phase and the
symmetry of the binding potential. But we find that although these papers excellently resolved
the problems each focuses on by virtue of the concept of parameter, they are fundamentally
different from our construction of a new parameter, where coupling is introduced into the
parameter space rather than merely combined with other parameter vectors. Most importantly,
in the conclusion section of [26], the authors explicitly left the search for ‘a parameter’s space
X(t) such that α(X(t)) = B(t)’ as an open question, which is just what we deal with in our
paper.

The spirit of the above treatment is to include coupling into the parameter space and view it
as a component of the new constructed vector. Because of the innate deficiency of the geometry
method, we must admit that albeit this method is very clear and straightforward in explaining
the influence of spin coupling on geometric phase and predicting new phenomena, the precise
calculation of the geometric phase by this method is complicated and time consuming.

Because the coupling discussed here is time independent, one may wonder whether the
coupling can become time dependent and uniquely serve as the driving force of evolution?
Recently, intra-variable coupling has become an active research area [27, 28]. Spin–orbit
coupling during quantum gate operations can be changed by using time-symmetric pulse
shapes for the coupling between the spins. The attention to this time-dependent coupling
perhaps arises from the ambition for the universal quantum computation just by the exchange
interaction alone.
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In conclusion, we have obtained the geometric phase of the one-site magnetic drive
tripartite spin system and discovered the phenomenon of coupling independent of geometric
phase. After discussing the influence of coupling on geometric phase, we proposed the
concept of quasimagnetic field and updated the concept of parameter vector. This treatment
has satisfactorily explained the discovered phenomenon in this paper. We also found that
only certain couplings have relevance for the value of geometric phase. The prospect of
intra-variable coupling is also mentioned. A more complicated case, i.e. n � 4, is still
open to us.
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